站内搜索:  

  网站首页           关于我们            新闻动态            疫 霉 菌            疫病控制            文献中心            研究成果            用户登录  
 
 

研究单位

  • 安徽农业大学
  • 国家大豆改良中心
  • 河北大学
  • 河北农业科学院植保所
  • 黑龙江农业大学
  • 黑龙江农业科学院植保所
  • 南京农业大学植物病理系
  • 西北农业大学
  • 云南农业科学院植保所
  • 云南师范大学
  • 中国农业科学院作物所
  • 安徽农业科学院作物所
  • 东北农业大学

  • 当前位置: 主页 > 研究成果 >

    大豆疫霉两个MAPK基因的功能研究

      

    Fungal Genet Biol. 2014 Apr;65:14-24. doi: 10.1016/j.fgb.2014.01.003. Epub 2014 Jan 27.

    PsMPK1, an SLT2-type mitogen-activated protein kinase, is required for hyphal growth, zoosporogenesis, cell wall integrity, and pathogenicity in Phytophthora sojae.

    Li A1, Zhang M1, Wang Y1, Li D1, Liu X1, Tao K1, Ye W, Wang Y.

    Author information
    Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China.

    Abstract
    Mitogen-activated protein kinases (MAPKs) play important roles in the regulation of vegetative and pathogenic growth in plant pathogens. Here, we identified an SLT2-type MAP kinase in Phytophthora sojae, PsMPK1, which was transcriptionally induced in sporulating hyphae and the early stages of infection. Silencing of PsMPK1 caused defects in growth and zoosporogenesis, and increased hyphal swellings after the induction of sporangia formation, along with increasing hypersensitivity to cell wall-degrading enzymes. Transmission electron microscopy showed that the cell wall of PsMPK1-silenced mutants was also deleteriously affected. A dark outermost layer in the cell walls disappeared in the mutants, and an additional layer of the mutant cell wall that was deposited abnormally inside an inner bright layer appeared nonhomogeneous and rough compared to the wild type. Pathogenicity assays showed that PsMPK1-silenced transformants lost their pathogenicity on susceptible soybean host plants and triggered stronger cell death. Overall, PsMPK1 is involved in growth, differentiation, cell wall integrity, and pathogenicity in P. sojae.

    ---------------------------------------------------------------------------

    Mol Plant Pathol. 2015 Jan;16(1):61-70. doi: 10.1111/mpp.12163. Epub 2014 Jun 30.

    PsMPK7, a stress-associated mitogen-activated protein kinase (MAPK) in Phytophthora sojae, is required for stress tolerance, reactive oxygenated species detoxification, cyst germination, sexual reproduction and infection of soybean.

    Gao J1, Cao M, Ye W, Li H, Kong L, Zheng X, Wang Y.

    Author information
    1Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China.

    Abstract
    The sensing of stress signals and their transduction into appropriate responses are crucial for the adaptation, survival and infection of phytopathogenic fungi and oomycetes. Amongst evolutionarily conserved pathways, mitogen-activated protein kinase (MAPK) cascades function as key signal transducers that use phosphorylation to convey information. In this study, we identified a gene, designated PsMPK7, one of 14 predicted genes encoding MAPKs in Phytophthora sojae. PsMPK7 was highly transcribed in each tested stage, but was up-regulated in the zoospore, cyst and cyst germination stages. Silencing of PsMPK7 affected the growth of germinated cysts, oospore production and the pathogenicity of soybean. PsMPK7 transcription was induced by stresses from sorbitol, NaCl and hydrogen peroxide. Transformants in which PsMPK7 expression was silenced (PsMPK7-silenced) were significantly more sensitive to osmotic and oxidative stress. Aniline blue and diaminobenzidine staining revealed that the silenced lines did not suppress the host reactive oxygen species (ROS) burst, indicating that either the inoculated plants activated stronger defence responses to the transformants and/or the PsMPK7-silenced transformants failed to overcome plant defences. In addition, extracellular secretion of laccase decreased in the silenced lines. Overall, our results indicate that the PsMPK7 gene encodes a stress-associated MAPK in P. sojae that is important not only for responses to various stresses, but also for ROS detoxification, cyst germination, sexual oospore production and infection of soybean.


    发布时间: 2015-02-01 15:56 浏览次数:   【 打 印 】【 关 闭
     
      南京农业大学植物保护学院植物病理系 江苏省南京市卫岗1号 邮编:210095
    Tel: 025-84399071 phytophthora@njau.edu.cn
     
      作物疫病信息平台- 建议最佳分辨率1024*768 Copyright © 2007-2008